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PREFACE

AMOSUR- 95 0 089

This report on the algebraic theory of structured singular values wraps up an era of mathemat-
ical research on gI sponsored by the Air Force Office of Scientific Research (AFOSR). During
the last thirteen years, the structured singular value has developed from a fledgling concept to
a household word in the aerospace-control community. Today we have commercially sup-
ported software enabling control designers to use gI-tools in practical, full-s-"1"t applications.
Though there remain unanswered theoretical questions, from an aerospace-control
practitioner's point of view it is time to declare the problem solved.

Still, as a mathematician, I find it difficult to walk away from a problem as interesting and
challenging as the structured singular value, especially when there remain basic, unanswered
questions. Most practical problems we face can be solved by using the upper-bound estimate
(see [1]) for gt, but this bound gives no information about the worst-case parameter sets.

I The algebraic theory presented in this report is the product of my efforts, over the last five
years, to compute the value of the Jt-function exactly (for a special structure) and to construct
worst-case parameter sets. Happily, I seem to have made some real progress in this direction,
though there remains a troublesome gap in the theory for general values of N. At least, it
seems that the case N = 4 can been solved by the dialytical method presented here.

While the theory was being developed for practical applications, I have always felt that struc-
tured singular values should be of interest to the theoretical mathematical community, though
I have seen little evidence of such interest. From a fundamental point of view, the structured
singular value is a natural generalization of the operator-theoretic concepts of norm and spec-
tral radius, measuring the size of a linear operator. In addition, as is shown in this report, the
computation of structured singular values leads directly to computational problems in intersec-
tion theory and invariant theory. Surely there are more general uses for such a natural and
interesting concept, going beyond the control-theoretic applications that the aerospace com-
munity has found for it.

SThis report is written primarily for mathematicians -- to explain a little about the practical
control applications and to describe the status of the algebraic theory. Industry could benefit
from further progress in this area, especially if significant simplification in the computational
approach could be found. I hope that someone with the right blend of interest, energy and
talent will choose this theory as an object of study and improve on the results presented here.

I would like to thank John Doyle, Allen Tannenbaum, Dave Morrison, Joel Roberts and my
colleagues at Honeywell (especially Mike Elgersma) for numerous helpful discussions during
the development of the theory. Thanks also to Marc Jacobs at AFOSR who made it possible
for me to spend some of my time working on this research topic.I

Blaise Morton

3 9 January 1995
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1 Introduction

The subject of this report is a special family of functions defined on the set of
square matrices with complex entries. Each of these functions measures the5 size of the matrix, according to some criterion. The operator norm 11 M 11 of
the matrix M defined by

11 M 11= max{j1 Mv 11111 v 11= 1} (1)

is a special example in the family of functions we will be working with.
The functions of interest are now defined. Let M (N) denote the set of

N x N complex matrices, and let M E M(N). Let J = {ji,... ,jm} be a4 partition of N, that is

Z: jk = N (2)

k=1

Let Vj denote the set of block diagonal matrices:

U 0j A(i2 ) .. ] I A(i,) E M(ij) (3)

Let V•j( 6 ) denote the set of all A E Vj of operator norm less than or equal to
6. Suppose for some value of b there is a A E Tb(8) such that Det(I+MA) =
0, where I E M(N) is the identity matrix. In that case, denote by bo the
minimum such 6; note that bo > 0. John Doyle [1] defined the functionI /ij(M): Jjs(M) = 1/6o 

(4)

If Det(I + MA) # 0 for all A E Vj then pA(M) = 0.
The construction above defines a function Aj for each positive integer N

and each partition J of N. When N and J are fixed one writes IL(M) to
denote Aj(M). The function A(M) is called the structured singular value of
M.

When discussing the structured singular value for a particular partition J

we often refer to the problem of computing yi(M) by the number of blocks

on the diagonal of A, i.e. the cardinality of J. For example, if N = 8 and

1 1
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J = {1, 3,4} we would refer to the computation of A(M) as a three-block
problehi. I

A more general definition of t (allowing repeated blocks in A) and some
of its fundamental properties were first presented in [1]. The definition above
is satisfactory for our purposes here. I

It is easy to check that for the single-block partition, J = {N}, the
function y is simply the operator norm. As is well known, the operator norm
of the matrix M is computable by algebraic methods. Form the polynomial

p(r) = Det(r2 1- MM*) (5)

and the operator norm of M, A(M), is the largest real root of the polynomial
p(r). The operator norm of M is the same thing as the maximum singu-
lax value F(M). Numerically robust software for computing &(M) (and all a
the other singular values) has been commercially available for nearly twenty

years, predating the definition of the structured singular value. The struc-
tured singular value function y(M) is a generalization of the maximum sin-I
gular value function, as the nomenclature suggests.

The problem we consider in this report is the computation of the value of
A(M) for general values of N and the N-block partition J = {1,..., 1}. Our I
objective is to derive a polynomial p(r) whose largest real root is the value
A(M). Such a polynomial is a generalization of the one in equation (5). i

1.1 Computation of p

The primary motivation for our research is to compute the value of A. While
much effort has gone into computing bounds for the various A-functions,
there has been relatively little progress toward computing A exactly. A re-
lated problem of practical interest, which we also address here, is to determine
the worst-case parameter sets, i.e. specific matrices A E Vij(J0) for which
Det(I + MA) = 0. In the following we embark on an algebraic theory of I
structured singular values, the goal of which is to solve these two problems

by algebraic methods. To minimize the complexity of the analysis we con-
centrate on the particular case in which the matrix A is an ordinary diagonal I
matrix. This line of research, started four years ago [2], has evolved to a point
where existing computer tools are adequate to perform the computations for
small N. By these methods, for the first time we have been able to compute

2 1
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IL and find worst-case parameter sets for a four-parameter problem (i.e. four
blocks, with each block a scalar parameter). See Section 8 for an example.

Unfortunately, the approach leads to impractical computational algo-
rithms for large N. We do not know whether a more efficient algorithm
is possible. The current theory leads to a conjecture on the growth in com-
plexity as the number of parameters increases, but we do not have definite
results. See the formula at the end of Section 4.

The p-function, developed to solve practical engineering problems, moti-
vates some interesting mathematical theory. The theory is now beyond the
stage where practicing engineers are equipped to contribute, so it is hoped
that mathematicians will take over and (perhaps) develop some new theory to
answer the outstanding questions. Of special interest is the question whether
a polynomial-time solution algorithm (polynomial in N) can be found. To
help motivate the problem for non-engineers, a brief history of p. and its
engineering significance is presented in the next introductory section.3 We hope that mathematicians and engineers alike will find something of
value in this presentation.

1 1.2 The Significance and History of p

Modern control engineers approximate real systems with finite-dimensionalIlinear time-invariant (FDLTI) models. These models are in the form of an
inhomogeneous O.D.E:

dx
T = Ax +Bu (6)

y = Cx + Du (7)

3 where x is the state-vector, u is the control input vector, y is the output
vector, and A, B, C, D are constant matrices.

The technique of representing the system by the matrices A, B, C, D is
convenient from a mathematical viewpoint, but its limitations must be rec-
ognized.

First, during the design phase, the parameters in these matrices cannot
be predicted exactly. One often supposes a nominal system model, derived
from physical principles, but the behavior of a real-world system will not
coincide exactly with its nominal model. To account for this type of un-
certainty, the designer may think of the model as an unknown point in a

1 3
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specified multidimensional neighborhood of the nominal point in the space
of A, B, C, D matrices. j

Second, even after the system is built, one usually cannot measure all the
matrix coefficients in a real-world situation. The frequency response (transfer
function) of a physical system is a more practical thing to measure. For thisI
second reason (and various other reasons), many practical engineers prefer
frequency-domain models of their systems. To account for uncertainty in
frequency-domain models, engineers augment their nominal models in two I
ways:

1. with exogenous noise inputs assumed to lie in a frequency-weighted 3
unit ball in the Hardy space H 2

2. with perturbative transfer functions assumed to lie in a frequency- t
weighted unit ball in the Hardy space H,.

The reader should be aware that uncertainties in both time-domain and
frequency-domain models often play important roles in the same control
system design. The construction of a perturbation structure, to account
for both types of uncertainties in a real-world system, is a key part of the
control-engineering art.

The p-approach to control theory uses both time-domain and frequency-
domain concepts. First, a multidimensional box is constructed (mathemat-
ically) in the A, B, C, D space. The assumption is made that the system
model could lie anywhere within this box. Next, by algebraic manipulations,
a parametric representation of the entire box-worth of systems is derived.
The associated parametric set of frequency-domain models is then augmented
with exogenous inputs and perturbative operators to produce the perturba-
tion structure. Finally, a controller is found (if possible) that guarantees I
good stability and performance properties for every system model contained
in the perturbation structure. This process is called robust control design.
There is a substantial body of theory underlying this construction (see [3]I
and the references contained there), here we shall only describe the basic
concept behind the frequency-domain stability criterion.

The researcher in practical control theory should have a firm grasp of the
frequency-domain theory and its practical significance. It is no exaggeration
to say that the standard time-domain theory, by itself, is inadequate for
practical applications. For the benefit of those who want more background,

4 m
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the remainder of this sub-subsection is a quick introduction to the frequency-
domain approach.

Begin by assuming that you are operating a real physical device, with
knobs (control input u) and dials (measurement vector y). Suppose the
physical system has been given to you at a steady-state condition - the
input vector, output vector and internal system states are all constant. This
assumption of steady-state condition cannot be verified by direct physical
observation because the notion of the internal state is a theoretical construct.
Even so, in many practical system, if the knobs are all fixed and the dials all
indicate constant outputs, and if the system seems to be behaving properly
in all other respects, the steady-state assumption is made.

Now wiggle one of the control inputs by a (small) sinusoidal signal and
measure the (small) variations of each output signal. Let the perturbing
input signal be Aksin(wt) in the kVA input channel and measure the additive

perturbation on the jth output signal. The jth output will be perturbed by
a signal that looks close to Bj,ksin(wt + cj,k). The ratio Bj,k/Ak is called
the gain and the angle fj,k is called the phase shift of the system from the
kt1h input to the jth output at the frequency w. The data obtainable in thisI fashion can be collected into a family of complex matrices F(w) parametrized
by the frequency w:

F(w) = [Fj,,_(w)] [BikeV'cýf (8)

I Call this matrix F(w) the frequency response of the linear system. Assuming
a linear system response to (small) perturbations, an analytic expression for
F(w) can be derived from the associated A, B, C, D matrices by using the
Laplace transform. In deriving such an expression, it is customary in the
engineering literature to let the Laplace transform variable s denote iFTw
and use the argument s instead of w for the transfer function T(s). The
transfer function T(s) is defined for all complex values of the parameter s as
follows:

T(s) = D + C(sI - A)-'B (9)

For values of s on the imaginary axis, s = iP"w, we have T(s) = F(w). The
transfer function T(s) is the basic object of attention in frequency-domain
methods. The system is stable if and only if all the poles of the transfer
function lie in the open left-hand plane of the complex s-domain.

1 5
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1.2.1 Frequency-Domain Uncertainty - The Small Gain Theorem

From an analytical point of view, it is essential to recognize that a frequency-
domain model (transfer function) T(s), whether computed mathematically
or measured experimentally, is an approximation. The principal weaknesses
of such a model vary with application, although all practical models suffer
from three basic limitations:

1. They vary as a function of steady-state condition I
2. They are accurate only for small (perturbation) signal inputs 3
3. They are accurate only for a bounded range of frequencies

These modeling limitations complicate the analysis of real-world systems
having significant nonlinearities, range of operating point and frequency-
dependent model uncertainty. The p-theory was developed primarily to ad-
dress systems in which this last class of problems is the primary concern. We I
will be addressing problems associated with frequency-domain uncertainty in
FDLTI systems.

One basic tenet of frequency-domain uncertainty is: model uncertainty
tends to increase at high frequencies. The range of frequencies for which
the model is accurate depends on the physical properties of the system ele-
ments. There are many factors that contribute to high-frequency uncertainty I
- two important examples are sensor limitations and actuator/power-supply
limitations. With increasing frequency it becomes increasingly difficult and
expensive to produce sensors and actuators that work close to any predictable
analytical model. Because cost is a vital factor in system design, mathemat-
ical models are often not valid at frequencies above the range required for
practical system operation.

Before proceeding, it is worth observing that model uncertainty is the
primary motivation for feedback control. Considering the issue abstractly, I
if our models (including knowledge of the initial state) were perfect, there
would be no need to consider adjustment of a control input based on sensor
measurements. The control designer could include a simulation of the perfect I
model in his control laws and use a simulated value in place of any physical
measurement. Thus, feedback control strategy depends in a fundamental
way on the uncertainty characteristics of the model.

61 I
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Let us consider briefly some practical issues (there are many) associated
with uncertainty. First, if the open-loop system is inherently unstable (as
many aerospace vehicles are) there is the issue of robust stabilization. There
have been real system designs (poor ones) where the nominal closed-loop
system is stable but a small change in model parameters produces an unstable
closed-loop system. We want to insure that our systems remain stable for all
parameter variations within a specified range of values.

Second, even if robust stability is not a problem, there is the issue of
robust performance. Parameter variations, large or small, can influence the
performance of a closed-loop system. Ideally, the closed-loop system should
be relatively insensitive to variation of parameters within a set of anticipated
ranges.

Third, whether the open-loop system is stable or not, we are concerned
with the potential destabilizing effects of perturbations to the system state.

State perturbations arise when the outside world interacts with our system,
causing changes in state not predicted by our nominal model. A wind gust
acting on an airplane is a typical example.

Finally, we are concerned with uncertainties in system dynamics, whether
because of internal dynamics neglected in our design models or because of
subsystem failures. Uncertainties of all four types are considered in a typical
control design. We have a limited ability to represent them and to design
control systems accommodating them, but these are the real issues that drive
robust control design.

We now address analytic representation of frequency-domain uncertainty.
Consider a nominal transfer function T(s) subject to uncertainty. Much work
has been devoted to modeling various types of uncertainty (an early reference
is [4]), let us take additive uncertainty as one simple example. The resulting
structure will be applicable to many other types of uncertainty.

Suppose the nominal model T(s) has n inputs and m outputs. A feedbackIcontroller K(s) of general type will have n outputs and m + k inputs. The n
outputs of K(s) are identified with the inputs of T(s), the last m inputs of
K(s) are identified with the outputs of T(s), and the first k inputs of K(s)
are identified with command inputs from an external source (e.g. the pilot of
an airplane). The closed-loop system now has only k inputs (the externally
generated commands) but it still has the same m outputs as the original
open-loop system T(s).

1 71
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We assume the transfer function T(s) is perturbed additively by some
unknown, stable function W(s)A(s) where W(s) is a specified m x m transfer
function (weighting matrix) and A(s) is an unknown transfer function in the
unit ball (relative to the operator norm) of the space of m x n matrices with
H., entries. The open-loop system becomes

Tpert(s) = T(s) + W(s)A(s) (10)

Consider what happens when the fixed controller K(s) is used to close the

loop for Tpert(s). The robust stability question is: is it true that for all A(s)
in the unit ball of H,, the closed-loop system obtained by replacing T(s) I
with Tpert(s) is stable?

To answer the robust stability question we first perform an algebraic
transformation to the problem. We assume that the nominal closed-loop I
system (A(s) = 0) is stable. Then it is an elementary exercise to construct a
stable transfer function M(s), independent of A(s), with m + k inputs and
n + m outputs with the following property: when the first n outputs of M(s)I
are closed through A(s) to the first m inputs of M(s), the closed loop system
is the same as that obtained by closing the bottom loops of Tpert(s) through
the last m inputs of K(s). Partitioning M into blocks, we find that the closed I
loop transfer function has the form:

-. ,(M, A) = M22 + M21A(I - M11A)-1 M12  (11)

From this expression we see that the closed-loop system will be stable for all
A of norm less than 1 if and only if the factor (I - M1iA)-1 is stable for all I
such A. Clearly, if the H0o operator-norm of Ma(s) is less than 1 we can
conclude robust stability. In the case where A has no additional structure,
this sufficient condition turns out to be necessary - that is the small gain I
theorem.

In those cases where the uncertainty is known to have block-diagonal
structure, however, the sufficient condition 11 Mu1(s) I1< 1 is no longer nec-
essary. Block-diagonal conditions on A arise naturally in many situations;
for example, when a collection of physically-isolated, uncertain systems T3(s)
are cascaded. Associated with each Ti(s) will be a separate Ai(s), and the
overall A(s) for the cascaded system will have block-diagonal form.

The small-gain theorem can be applied in the case of block-diagonal A, I
but the test is too conservative for many practical applications. Often, the

81
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designer is forced to sacrifice too much performance in order to pass the
small-gain test, so a better criterion is needed. From this need was born
the structured singular value test, which is evaluated by computing the p-
function.

In applications, the transfer function Mu1(s) is represented in the com-
puter via a state-space realization (A,B,C,D matrices). For each sj = v/'l'wj
in a grid on the imaginary axis the transfer function M11(si) is computed.
The value of p(Muj(sj)) (or some bounding function) is then computed. For
example, the maximum singular value "•(Mi1 (sj)) is the upper bound corre-
sponding to the small gain theorem. The values of the function are plotted
on a log-magnitude vs. log-frequency graph and displayed to the design engi-
neer. If it is found that p(Ml(si)) is less than one for all values on the grid,
robust stability is concluded. Implicit in this approach is the assumption
that the grid-size is fine enough to make it apparent whether the p function
exceeds 1 at any point along the imaginary axis.

If the p-function is smaller than 1 at all points on the imaginary axis,
robust stability follows from the properties of continuity of roots of a poly-
nomial equation (with respect to its coefficients) and the maximum modulus
theorem.

A different approach is required if one wants to consider only real values
for some of the uncertain parameters, but we shall be concerned with complex
parameters (complex entries in the blocks Aj) in this report.

1 1.2.2 The Origin of 1

The concept of the Structured Singular Value function, p(M), is now more
than a decade old. The early developmental stage of the concept can be
traced back to 1977 when singular values were applied by a group of control-
design engineers at Honeywell's Systems and Research Center to the analysis
of multivariable linear time-invariant systems [5]. Their goal was to find a
multiloop generalization of the famous small-gain theorem, so useful in the
robust-stability analysis of single-input single-output (SISO) systems. At
that time, the accepted practical technique for evaluating robust stability
of multi-loop systems was to open a single loop at a time and apply the

established SISO criteria (gain and phase margins). The Honeywell group
recognized the inadequacy of this one-loop-at-a-time approach and aimed at
a more reliable robust stability test. By analogy with the small-gain theorem,

19
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the solution they sought was an analytic tool for frequency domain analysis.
Shortly after its theoretical development, the singular value approach 5

was applied to a helicopter flight-control design [61. During that study it
was found that the methodology displayed some significant weaknesses. The
difficulty was that representation of uncertainty in an unstructured way can 1
lead to an overly conservative robustness criterion. In general, the robust
stability test in the singular-value methodology was sufficient but far from
necessary. A control system with adequate robust stability could fail theI
test. This shortfall was the reverse of the problem inherent with the single-
loop-at-a-time approach, where each loop might look good individually but
the multiloop system as a whole might lack robustness. *

The overconservative nature of the singular value approach was easy to
understand but not so easy to fix. A better methodology was sought: to
be acceptable it had to be computable for problems of realistic size and its
criteria for robust stability had to be as close to "necessary and sufficient" as
possible. After several years, an acceptable solution was found in the form
of the Structured Singular Value (SSV).

In 1981 the mathematical theory of the SSV was introduced by Doyle in
the landmark paper [1]. At about the same time, an engineering application i
paper [4] appeared, showing how a wide variety of practical robust stability
problems could be reduced to computing (or bounding) the SSV of a matrix
transfer function, called the perturbation structure. From a theoretical point !
of view the SSV was a complete success: a system is robustly stable if and
only if the unperturbed system is stable and the SSV function p(M(s)) of
its associated perturbation structure M(s) is less than 1 for all values of I
s on the imaginary axis. The general MIMO robust stability problem was
reduced to a single class of numerical problems: given a complex N x N
matrix, find a sharp, computable upper bound for y(M). A computable I
upper bound, p(M), which turned out to be good for many applications
(early examples provided in [7] and [8]), was provided by Doyle in [1], and a
powerful methodology for robust control design and analysis was born.

It is worth emphasizing that the upper-bound function p, not P(M),
is the function used in today's is-methodology. This upper bound is the
solution of a convex optimization problem and so is easily evaluated on a
computer. It represents a significant improvement on the singular value test
(maximum singular value a(M)), which is itself an upper bound on p(M).
The robust control synthesis methodology, p-synthesis, is based on a weighted

10 5
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Ho, optimization theory associated with the upper bound p.
Since the introduction of u [1], this concept has been implemented in a

variety of computer tools to quantify the robust stability of feedback control
systems. Engineers have applied these tools successfully in the design phases
of control systems for many advanced aerospace vehicles: the B-2 Bomber,
Space Station, and the F-15 STOL Technology Demonstrator to name just a
few. The p-analysis and synthesis tools are now a standard part of modern
aerospace system design.

S1.3 Structure of the Report

After this introduction we move directly to the algebraic theory. In the
second section we derive the basic set of algebraic equations, and in the third
section we show how the elimination can be performed for the cases of 2, 3
or 4 parameters. Some abstract theory associated with the elimination for
general numbers of parameters is postponed until Section 9.

In Section 4 we redirect attention to a related algebraic problem about
which much is known. The link between the basic equations of Section 2 and
the hyperdeterminant of a three-dimensional matrix is shown, so that we can
apply the known results to our problem.

In Section 5 we introduce a third algebraic problem, also related to the
basic equations. This approach was the starting point of the algebraic theory
of [2], it has definite computational advantages in the cases of two and three
parameters. The general results for this approach in the low-dimensionalI cases are described in Section 6. Some extensions of these results to higher
dimension are presented in Section 7.

In Section 8 we illustrate the techniques described in the first seven sec-
tions by computing ps and worst-case parameter sets for numerical examples.
Section 9 is an abstract theoretical presentation of the general approach,

I intended for more advanced researchers. Section 10 is a discussion and sum-
mary of results and outstanding issues.

I
I
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2 Derivation of the Basic Equations

Let M be a complex, N x N matrix. As was shown in 11], the structured

singular p(M) is given by:

UM)= sup P(WM) (12)

where p is the spectral radius function and 1D is the set of real-diagonal Nx N
matrices.

The sup function in equation 12 is (effectively) taken over a compact set,
so there is some nonzero N-vector z such that, for some E),

eMz = A(M)z (13)

Our immediate goal is to determine a polynomial expression whose lar-
gest real root is the value p(M). For that purpose we introduce the variable
parameter r, and define the system of Hermitian forms Hk(r):

Hk(r) = M;Mk - r'ek (14)

where Mk is the kh row of the matrix M and ek is the row vector whose kh
entry is 1, all others 0.

Lemma 1 p(M) is the largest real value of r for which there is a nonzero
N-vector z satisfying

z*H,(r)z =0 (15)

for k = 1,...,N

Proof of Lemma 1: First we show that the conditions of the lenma
are satisfied if p(M) is substituted for r. Select z $ 0 satisfying equation 13.
Compute the squares of the magnitudes of the k" entries on each side of

equation 13:
(Mkz)*(Mkz) = p(M)'z:zk (16)

But this set of equations for k = 1,..., N is equivalent to equation 15.
Conversely, suppose ro is the largest real number such that some nonzero

z satisfies equation 15. Then ro is the largest real number for which there
are 9 E V and z 5 0 such that

12
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eC*Mz roz (17)

That is, p(M) = ra. E
If we think of z, i as a vector in a 2N-dimensional real vector space, the

system of equations 15 gives only N polynomial equations in the 2N + 1 real
variables z, i, r. Our goal is to eliminate z and 1 in order to obtain a single
polynomial equation in r. Additional polynomial equations are needed for
the elimination: these are derived from the condition that the value of r we
seek is extremal.

Lemma 2 Let J(r, z, i) denote the N x 2N matriz

[,1 = (r) .... (r)1

[zHN (r) -'Hjv(r)J

If (ro, z, i) is a solution to the system of equations 15 and ro is extremal
among such solutions, then the rank of J(ro, z, i.) is less than N.

Proof of Lemma 2: Consider the function F: R2-' --# RN defined
by:

z*Hi (r)z
F(r, z,= [-)..*.r)z (19)

Observe that the N x 2N matrix J(r, z, i) is the matrix of partial derivatives
of F with respect to z, ,, that is:

J(T, , Z-Z)j = (20)

At a point (r, z, i) where F vanishes and the matrix J of partial derivatives
has full rank N, the implicit function theorem [9] implies that, locally, the zero
set of F can be parametrized smoothly by r and an N-dimensional subset of
(z, i). But then r cannot be extremaL This contradiction proves the lemma.
0I

The previous two lemmas lead directly to a system of polynomial equa-
tions in (r, z, Z-) that must be satisfied at a solution of the equations 15 for
which r is extremal. We use the symbol C to denote this set.

The set C contains:

13
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1. the system of N equations 15

2. the 2N
2h N )size-N determinantal minors from the matrix J(r, z, :z).

It appears that, for a general class of matrices M, the system C generates
a system of polynomials from which the variables (z, i) can be eliminated.
The eliminant of this system is a polynomial p(r) whose coefficients are poly-
nomials in the coefficients of M and V. We call this polynomial p(r) the
r-polynomial. The roots of the r-polynomial are called r-values, and those
r-values that appear at local maxima are called p-values. The largest r-value
is a p-value which is equal to the value of the function p(M).

The procedure required to perform the elimination depends on N. In the
following we will show how this elimination can be performed for values of
N<4.

I1
S

II

B

a
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a 3 Performing the Elimination

We begin this section with a description of the general elimination technique
used to derive the r-polynomial. The details of the computations in the cases
N < 4 are then presented in subsections.

Recall the set of equations C defined in the previous section. We will use
the polynomials in C to generate a system of polynomials bihomogeneous in

Definition: A polynomial q(z, 2) is called bihomogeneous of bidegree5 (ij) if it is homogeneous of degree i when considered as a function of the
vector z and homogeneous of degree j when considered as a function of the
vector i.

For example, the expressions z 1i1, z3 2 and z*Hk(r)z are all bihomoge-
neous of bidegree (1,1).

For each N, let PN(ij) denote the set of bihomogeneous polynomials of
bidegree (i j). The set PN(ij) forms a finite-dimensional vector space over
the real number field 1Z. Also, if pi(z, i) E PN(il,jl) and p2 (z, i) E PN(i2, j2)
then (Z, 2)P2(Z, ) EPN(il + i 2 ,ji +12).

Our elimination approach makes use of an elementary combinatorial lemma,
stated here without proof.

Lemma 1 The dimension of PN(i,j) is:

3 dim(PN(ij))= (N+i-1) (N+j-1N-) (21)

The notion of bihomogeneous polynomials extends in the obvious way
when the coefficients of the polynomials lie in a general ring. Considered
over the ring of real-polynomials in the variable r, all of the polynomials in C
are bihomogeneous. Those in equation (15) are of bidegree (1,1), while each
of the size-N minors of the the matrix J(r, z, 2) has bidegree (ij) for a pair
of non-negative integers i,j such that i + j = N.

Our strategy for obtaining the r-polynomial is a follows. Pick a pair of
positive integers iT, ITwith bothiTandiTsufficiently large (depending on

N). Over the ring of real-polynomials in r, consider the space of bihomo-g geneous polynomials PN(iT,jT). Now each polynomial q in C is bihomoge-
neous, let bidegree(q) = (iq,jq). If iT > iq and iT > jq, q can be multiplied

1 15
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by any polynomial h E PN(iT - iq,jT - jq) (considered over R) to obtain
qh E PN(iT,jT). In this way the original set of polynomials in C can be used B
to generate a larger system of polynomials in the module PN(iT, iT) over the
ring of polynomials in r. Each polynomial generated in this way must vanish
on the set of points we seek. We can represent the entire set of equations in I
PN(iT, jT) as a single matrix equation:

A(r),P(z, 2) = 0 (22)

where A(r) is a matrix of real polynomials in r and ((z, 2) is a vector of basis
monomials of the vector space PN(iT, jT) over R. I

The condition that remains to be verified is that, for a generic value
of r, the rank of the matrix A(r) is equal to the dimension of PN(iT,jT).

Under this condition the r-polynomial p(r) is nontrivial and theoretically a
well defined - it can be obtained (in principle) by computing the greatest
common divisor of the maximal minors of the matrix A(r).

The procedure is illustrated in the examples below. As will be seen, once I
the roots of the r-polynomial have been found we can recover the z-vector as
well. 5
3.1 The Case N= 2

First we determine the polynomials in C. There axe two types:

1. The pair of hermitian forms z*Hl(r)z, z*H 2(r)z

2. The size-2 minors of the 2 x 4 matrix J

All the equations are bihomogeneous. The two equations of the first type
are independent, of bidegree (1,1). As for the equations of type two, observe
that the 2 x 4 matrix J has the form: 3

J(r,Hz, Z) = z*i(r) zTr(r (23)

Considering all the size-two minors of J, we find that there are the six equa-
tions of the second type: one of bidegree (2,0), four of bidegree (1,1), and
one of bidegree (0,2). Consequently, the set C consists of eight equations.

16 3
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It turns out that we do not need all the equations in C to perform the
elimination. Let B consist of those six equations of bidegree (1,1). In fact,
there is no loss of generality working with B instead of C. To see this, consider
the 2 x 2 submatrix formed by the first two columns of J. Note that

[z*Hi(r) z [z*Hi(r) 1 24jz [zH2 (r) zJ [zH 2 (r) (24

The two forms in the vector on the left-hand side of equation 24 are in B.
Therefore, if z is in the zero set of B, the determinant of the matrix on the
right-hand side of equation 24 must be zero. The determinant of that matrix
is one of the two equations in C\B. Similarly, by taking the conjugate of
equation 24, we see that the determinant of the last two columns of J (the
other equation in C\B) must vanish as well. We conclude that the zero set
of C is the same as the zero set of B.

There is a 6 x 4 matrix A(r) consisting of (in general) quadratic functions of
r such that the six equations in B may be written in the form of equation 22.
For general matrices M the derived matrix A(r) will be rank four except for
those values of the parameter r in a finite set, denoted y. From the matrix

A(r) one can derive a polynomial p(r) of minimal degree whose roots are the
r-values in E. In Appendix A the polynomial p(r) is derived.

Suppose the set of real r-values in E is known. Let ro be a value in E.
We will show how the vector z can be recovered.

Let V be a nonzero vector such that

A(ro)V = 0 (26)

Using the four entries of V, form the 2 x 2 matrix Q:

Q V1 V2] (27)

I 17
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If the value r0 corresponds to a solution of B, the matrix Q is rank-one. If
this condition is satisfied, perform the dyadic decomposition: B

Q 'I[Zi][.iJ (28)1

and the vector (zI, z2) is a solution of the equations B for r = r0 .

3.2 The Case N= 3

For N = 3 the approach is similar to the case N = 2. Again, we define a set
C consisting of two types of equations: I

1. The three hermitian forms z*Hl(r)z, z*H 2 (r)z, z*H3 (r)z 3
2. The size-3 minors of the 3 x 6 matrix J

Again, the equations of the first type are independent, of bidegree (1,1). This
time, however, the equations of type two have bidegree (ij), where i +j = 3. i

We derive from C a set B of bihomogeneous equations of bidegree (2,1).
First, we have the nine equations obtained by multiplying each of the type-
one equations by each of z1 , z2, z3 . To this set we add the nine minor deter-
minants from J of bidegree (2,1). Constructed in this way, the set B consists
of 18 equations of bidegree (2,1). I

By equation 21, the dimension of P3 (2, 1) is 18. The equations in B form
a system of 18 equations in the 18 variables that span P3 (2, 1). Picking a
basis, let 4(z, £) denote

4D(z,i) = [z , 2z1 Zi zZ3 z 2 i, -. ,zi'Z331 (29)

With respect to this vector (D we can write the matrix A(r) of equation 22.
It is 18 x 18, nine of its rows are affine in r while the other nine are cubic.
The determinant of the matrix A(r) is a polynomial p(r) of degree 36. 3

We have shown by numerical computations that, for some matrices M,
the polynomial p(r) obtained in this way is not identically zero. For such M,
let E denote the set of real roots of p(r). For a given r0 E E we can recover $
the vector z by a process similar to the case N = 2.

Let V be a nonzero vector such that i
A(ro)V = 0 (30)

18 3
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Using the 18 entries of V, form the 6 x 3 matrix Q:

V1  V2  V3
V4  V5  V6

Q= V7  VS V9  (31)
V1 0 V1 I 2V1 3 V14 V15

L V6 V17 V18

If the value ro corresponds to a solution of B, the matrix Q is rank-one,
hermitian. If this condition is satisfied, perform the dyadic decomposition:

: ~Y2Y

Q= "3 [ 1Fi 2 i]3 (32)
Y4

Y6

The solution vector (zI, z2, Z3) can be obtained by taking the conjugate of
the right dyadic component of Q, or by computing the dyadic factors of the
matrix P given by:

Y1 Y2 Y3
P Y2 Y4 Y5 (33)

SY3 Y5 Y6

The matrix P should be rank-one, symmetric, if r0 corresponds to a solution
of B. In that case the decomposition

P z2 []z1,Z2,Z31 (34)
Z3

should yield a vector z that is proportional to the conjugate of the right
dyadic component of Q.

3.3 The Case N = 4

The procedure for N = 4 is similar to that required for N = 2 and N =

3. This time, the set B consists of bihomogeneous polynomials of bidegree

19
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(3,3). One subset of equations is obtained by multiplying the four equtions of
bidegree (1,1) by the 100 basis monomials in P4 (2, 2), yielding 400 equations 5
in B. The second subset is obtained by multiplying the 36 4 x 4 minors of J
of bidegree (2,2) by the 16 basis monomials of P 4(1, 1), yielding another 576
equations of the same type. I

The space P4(3, 3) has dimension 400, so the matrix A(r) has size 976 x
400. By numerical computation we have verified that there are 4 x 4 matrices
M for which the matrix A(r) has rank 400 for generic values of r. There is I
a polynomial p(r) whose roots form the set E of r-values for which the rank
of A(r) is less than 400. At the moment, we do not know the degree of this
polynomial, though we suspect (for reasons that will be presented later) theU
degree is 272.

The value of the z-vector can be computed by methods similar to those
described in the cases N = 2 and N = 3. A numerical example is presented
in Section 8.

3.4 The Case N > 4

We have not attempted to compute any examples for the case N = 5 or 5
larger. We suspect these cases can be handled by a similar computational
procedure, but we have no proof.

The degree of the polynomial p(r) in the case N = 5 is believed to be I
2150. A formula for the (suspected) degree of p(r) for N > 4 is presented at
the end of the next section on hyperdeterminants. 3

2
I
I
I
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4 Hyperdeterminants
The r-polynomial has a close tie with the theory of hyperdeterminants. Hy-

perdeterminants were invented by Cayley [10], a modern treatment is pre-3sented in [11]. In this report we will discuss only those facts about hyper-
determinants needed to help understand the r-polynomial. The reader is
referred to [11] for proofs of the results stated here.

First, some basic definitions. For an integer N > 0, suppose we are given a
collection of N 3 numbers indexed by integers i, j and k each running from 1 to
N. Let W = [Wijk] denote such a collection. We call W a three-dimensional
matrix of size N. The numbers that constitute W can be pictured in a
three-dimensional array - a generalization of the planar array of a standard
(two-dimensional) matrix. Three-dimensional matrices of size N often arise
when a three-index tensor is written relative to a basis of the underlying
N-dimensional vector space.

We will be using basic facts about discriminant polynomials. We consider
a general form f over CN and its zero-set, the hypersurface Z(f) of the
projective space pN-1. If f is a form of degree d then the gradient of f, Vf,
is a vector of forms homogeneous of degree d - 1. For a generic form f there
are no points z E Z(f) such that Vf(z) = 0. In that case, the hypersurface
Z(f) is a smooth manifold of dimension N - 2 in pN-1.3 For some forms f the hypersurface Z(f) is not smooth (i.e. Z(f) is
singular). There is an irreducible polynomial in the coefficients of f, called
the discriminant of f, which vanishes if and only if there is a point in Z(f)
where the gradient of f vanishes.

The general theory of discriminants has been well studied; much is known
about them. It is a classic result that the discriminant of a homogeneous
form f of degree d over CN is a polynomial of degree N(d - 1)N'- in the

SN~ - )coefficients of f (see [12], p. 99).

We are now prepared to discuss hyperdeterminants of three-dimensional
matrices. Though we do not present an explicit construction, the hyperde-
terminant of W is a polynomial function q(W) of the values {Wjk}. The
significance of the hyperdeterminant polynomial is as follows:

Lemma 1 There is a polynomial q(W) in the variables {Wijk}, called the

hyperdeterminant polynomial, which vanishes if and only if there are three

1 21
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nonzero N-vectors x,y,z such that:

Vk Wijkx,yj - 0 (35)
/,=N I

Vj E WijkXiZk = 0 (36)

N I

Vi E WijkYjZk = 0 (37)
j,k=li

For more details concerning this lemma and the other results stated in
this section, the reader is referred to [11].

If the entries of W are polynomial functions of a variable r, the hyperde-I
terminant of W is a polynomial in r.

The motivation for the nomenclature "hyperdeterminant" can be under-
stood by a comparison with the ordinary determinant function for (two- £
dimensional) matrices. Given an N x N matrix A there is an associated
bilinear form a: 5

N

a(x, y) = Aiijxyj (38)

Suppose there are nonzero vectors x, y such that a(x, y) = 0 and

oa(x,y)/l9x = 0 oa(x,y)lOy = 0 (39)

or, equivalently: N

Vj Ai~jx = 0 Vi ZAijyj =0 (40)
i=1 j=l I

Either of the two equations in 40 imply that the determinant of the matrix
A must vanish. Conversely, given that the determinant of A is zero, we can
find a pair of nonzero vectors x, y such that equation 40 is satisfied. 3

By the argument just given, we see that the determinant of the matrix A is
exactly the discriminant of the associated bilinear form a. The analogy with a

22 3
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hyperdeterminants can now be made. Associated with the three-dimensional
matrix W of size N is a tri-linear form w(x, y, z):

N
W(X, Y, Z) = WijA:Xiyjzk (41)

i~j,k= l

The discriminant of the form w is the hyperdeterminant of W.
Having vaguely defined the hyperdeterminant of a three-dimensional ma-

trix, we now show how the basic equations of Section 2 lead to a hyperdeter-
minantal condition.

Recall the basic equations:

IVkz*Hk(r)z=O (42)

and the rank condition, that J(r, z, ,) defined by:

J(r, 'Z-,•) = ... ... (43)

z*HN(r) zT7JL(7)

*should 
be rank less than N.

From the rank condition we can derive the following lemma

I Lemma 2 Let (r, z, i), r E R, z 3 0, be a point where the matrix J(r, z, i)

is rank < N. Then there is a nonzero, real vector t E RN such that

3 N N
Z tkHk(r)z = 0 E tkz*Hk(r) = 0 (44)
k=1 k=1

Proof of Lemma 2: Because J is rank deficient, there exists a nonzero
t E CN such that

N N _Z, tkz*H4(r) = 0 t kZTHk(r) = 0 (45)
k=1 k=1

Equivalently, taking the conjugate-transpose of the first equation and the
transpose of the second (and using the fact that Hk(r) is hermitian):

N N

-kHk(r)z = 0 ZtkHk(r)z = 0 (46)
k=1 k=1

* 23
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Considering these two equations together, we see that the vector t can
be replaced equally well by both its real part and its imaginary part in all3
the equations above. Because t is nonzero, one of these two real vectors is
nonzero. We conclude that for some nonzero real vector t both equations 44
are satisfied. 0]

Define the three-dimensional matrix W by:

[Wijk] = [Hk(r)lij (47) 3
Now replace , by an independent variable y. The original N equations then
have the form:

Vk ij wkYizj = 0 (48)

With this same substitution, the two equations in the previous lemma
become:

N N

Vi E WiJkzjtk = 0 Vi E WijkYitk = 0 (49)
j,k=l i,k=l

We see that the hyperdeterminant of the three-dimensional matrix W
must vanish. The hyperdeterminant of W is a polynomial q(r), one of whose
roots is p(M). We conclude that the r-polynomial p(r) divides the hyperde-
terminant q(r). -

Remark 1 In our argument to show that the hyperdeterminant of W
vanishes, no use was made of the fact that the vector t may be chosen real.
The reality condition on t is significant, however, when we consider whether I
the hyperdeterminant q(r) is the same as the r-polynomial p(r). Consider a
real value ro at which the hyperdeterminant of W vanishes, and let Ero be
the associated set of (y, z, t) satisfying the system of equations in Lemma []. I
Then ro is a root of p(r) if and only if some point in Eo satisfies the realityconditions:

c:0 Y = 0 # t E RN (50)

In general, we do not know whether the degree of q(r) will equal the degree
of the r-polynomial p(r).

We are now in a position to take advantage of theoretical results concern-
ing hyperdeterminants. One such result is:

24 3
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Lemma 3 Let q(W) denote the hyperdeterminant of the three-dimensional
matrix W of size N. The degree of q(W) is:

deg(q) = (j + N)! 2N-1-2j (51)
O j!<(N-1)/2 J!3 (N - 1 - 2j)!

This formula is Corollary 2.9 on page 456 of [11]. For N = 2, 3, 4 and 5 the
values are 4, 36, 272 and 2150 respectively.

It remains an interesting open question whether the r-polynomial is equiv-5 alent to the hyperdeterminant polynomial for all N.

2
I
I
I
£
I
I
I
I
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5 Families of Hypersurfaces

The hyperdeterminant approach discussed in the previous section has certain I
theoretical advantages, but so far we have not been able to make use of it
in an efficient computational method. An approach that lends itself more
readily to computations is the subject of this section. The method described
below was first applied in [2].

We adopt the notation used in the statement of Lemma 2 in Section 4. f
Suppose r is a real variable, z is a complex vector variable and t is a real
vector variable. Define H(t, r) to be the N x N matrix of forms:

NI
H(t, r) E tkHk(r) (52)

k=1

An immediate corollary of Lemma 4.2 can be stated:

Corollary 1 Let f7 (t) denote the polynomial function: I
f,(t) = Det(H(t, r)) (53)

Consider r to be fixed, so that f, is a form of degree N in the vector t. If I
there exists a nonzero vector z such that (r,z,i) satisfies the conditions of
Lemma 2, then the discriminant of f, vanishes. That is, there is a nonzero
vector to such that: |

Vi 9fa(to) -0 (54)

Proof of Corollary: Fix z and r as above, and select an invertible N x N
matrix U in which z is the first column. Consider the matrix of forms L(t)

(we suppress the dependence on r, which is fixed):

L(t) = U'H(t,r)U (55)
and note:

Det(L(t)) = IDet(U)12Det(H(t,r)) = IDet(U)12fr(t) (56)

Observe that L(t) is of the form:

L(t)= at) A(t) (57) 1
263
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where a and a* are linear forms with values in CN-1 such that a(to) = 0
and a*(to) = 0. An elementary computation reveals, for all t:

Det(L(t)) = a*(t)A(t)ta(t) (58)

I where A(t)t is the matrix of cofactors (adjoint matrix) of A(t). Examining
the first-order behavior of this last expression at to we find that

I i ODet(L(to)) = 0 (59)
V t .

It follows that the discriminant of f, vanishes. 0
This corollary provides an advantage from a computational viewpoint.

The advantage is that the discriminant condition on the form f" leads to an
elimination of the N variables ti from a system of N homogeneous equations.
The goal of the elimination is a polynomial pd(r) whose roots we compute
numerically. By comparison, the basic equations derived in Section 2 require

I elimination of 2N variables, while the hyperdeterminant approach of Sec-
tion 4 requires elimination of 3N variables. In general, the computational
difficulty in performing an elimination increases rapidly with the number of
variables to be eliminated, so the advantage of computing Pd(r) instead of
the other eliminants is clear. The disadvantage is that this approach requires
modification in the case where N > 3.

This corollary provides a nice geometric view of the problem. Thinking of
as a family of forms, parametrized by the variable r, there is the associated

1-parameter family of algebraic zero sets V, of the projective space pN-1.
The nonvanishing of the discriminant pd(r) is associated with the geometric
condition that V7 is a smooth submanifold (nonsingular variety). As the
parameter r varies, we can imagine the family V,. deforming continuously
through smooth varieties for an open set of values of r, with occasional
singular sets occurring at the roots of pd(r). This simple geometric picture

I is not exactly correct, as we shall see, but the concept can be made precise.
Because the converse of the corollary is not true, the polynomial Pd(r)

is not the same as the p-polynomial p(r). All we can conclude is that the
polynomial we really care about, p(r), is a factor of the more easliy computed
polynomial pd(r).

This lemma is applied in Section 6 to the two tractable cases N = 2 and
N = 3. The difficulty in the case N > 3 is discussed along with some related
general theory in Section 7.
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6 Families of Hypersurfaces - Low Dimen-
sional Computations I

In this section we apply the family-of-hypersurfaces approach to look at the
cases N = 2 and N = 3. At the end we explain a complication that arises I
in applying this technique to the cases N > 3. As in the previous section, r
is a real variable and t is a real vector variable. Given the N x N matrix of
forms: I

H(t, r) = y tkHk(r) (60)
k=i

we are interested in the polynomial f,(t) defined by

fr(t) = Det(H(t, r)) (61) 3
and its gradient with respect to t. 1
6.1 The Case N = 2

In the case N = 2 the polynomial f,(t) has the form:

f7(t) = C2o(r)t2 + Cl1(r)tlt2 + Co2(r)t2 (62)

where each of the functions cii(r) is quadratic in r2 . I
For each value of r the zero-set of f, defines a pair of points in the

projective line P'. The vanishing of the discriminant is equivalent to the
geometric condition that the two points are coincident.

The two algebraic equations are:

0 = af,(t) = 2C2o(r)t1 + cu(r)t 2  (63)

0 = at---- = c(-(r)tl + 2co2(r)t2  (64)

This pair of equations can have a nontrivial solution only if the 2 x 2 coefficient
matrix C(r) defined by:

C~r) 2C2o(r) cul(r) (5ci(r) 2CO2(r)
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is singular. The discriminant polynomial pd(r) is:

pd(r) = Det(C(r)) = 4c 2 o(r)co02 (r) - cll(r) 2  (66)

5 which is quartic (degree 4) in r 2 . There are at most four nonnegative real
roots rj of Pd, one of which is the value y(M). It can be shown that, in this

i case, p(M) is the largest real root of Pd (see Appendix A).

6.2 The Case N = 3

I In the case N = 3 the polynomial f,(t) has the form:

fM(t) = c210(r)t2t 2 + C201(r)t2t3 + ci 20(r)ttt2t3 +
c10 2(r)tlt2 + cro21(r)t2t 3 + cO2(r)t2t2 (67)

I where each of the functions cijk(r) is cubic in r 2. There are no terms of the

form tJ because each matrix coefficient of tj in the form H(t, r) has rank at
most 2 (as can be verified by examining the construction of H(t, r)).

For each value of r the zero-set of f, defines a cubic curve in the projective
plane p 2 . The vanishing of the discriminant is equivalent to the geometric
condition that the curve is singular.3The three algebraic equations are:

0 0= Of(t) = 2c 2lo(r)tlt 2+2c 2ol(r)tlt 3+cI 2o(r)t•-+c111(r)t 2t 3+C1o 2(r)t2 (68)

Of,-(t)
0 tt -- c 21°(r)t2 +2CI 2°(r)tlt 2 +clll(r)tlt 3+2co 21 (r)t 2t3 +CO1 2 (r)t2 (69)

Saf(t) = c201(r)t+cl(r)tlt2 +2Clo 2 (r)tlt3 +co2 1(r)4+2CO12(r)t 2 t3 (70)
Ot 3

Each of the three equations above can be used to derive four linear equations
in the set W of monomials:

fI t3" t3" t2•t2" t2t2 tt•,tl3,'t " ,2,tlt3,t3 t2t2, t 2} 71

W-t2 iI,2 i3• , 1 2 013,1 3, 2l2t3, t lt 3, 3 V3, 2 3 t2 3 (71

For example, equation 68 can be multiplied by each of the four monomials
t{21,t1t2,t 1t3 ,t 2t3 } with the result linear in the monomials of W. By this

3 29
!



I
3
i

dialytic technique we obtain a set of twelve linear equations in the twelve
monomials of W. n

These twelve equations can have a nontrivial solution only if the 12 x 12
coefficient matrix C(r) defined by:

2c 21 0 2c 20 1  C120 C111 C10 2  0 0 0 0 0 0 0

0 0 2C2M0 2C2 01  0 C120  cill C102  0 0 0 0

0 0 0 2C2 10 2C201  0 C120  CllI C10 2  0 0 0

0 0 0 0 0 0 2C 2 10 2C 2 0 1  0 C1 2 0  C111 C1 0 2

c210 0 2C120  C111 0 0 2C021 c 01 2  0 0 0 0

0 C210  0 2CI20 Cm 0 0 2c0 21  Co12 0 0 0
0 0 C2 1 0 0 0 2CI20 C111 0 0 2CO21 C012 0

0 0 0 C210  0 0 2C120  C111  0 0 2Co21  Co12
C201 0 clll 2c,02 0 C021 2C£12 0 0 0 0 0

0 C2 0 1  0 ciii 2ci02 0 C0 2 1  2Co12 0 0 0 0

0 0 0 C201  0 0 c111  2co2 0 c0 2 1  2c0 12  0 £
0 0 0 0 C2 0 1  0 0 cii1 2CI02 0 c021 2co1 2

is singular. The discriminant polynomial Pd(r) is: 1
pd(r) = Det(C(r)) (72) 1

which is degree 36 in r 2. There are at most 36 nonnegative real roots rj of
Pd, one of which is the value p(M).

Unfortunately, in this case the rank deficiency of C(r) at r = ro is nec- I
essary but not sufficient for r0 to be a root of the p-polynomial. There is
a Zariski-closed set of 3 x 3 matrices M for which the matrix C(r) is rank- 5
deficient for all r. It is true, however, that a converse can be derived for
3 x 3 matrices M in the open set for which C(r) is full-rank for at least one
value of r. This issue and the complexity of the general situation is discussedi
further in the next section.

6.3 The Cases N >3

In the case N = 4 the polynomial f,(t) has the form:

f7 (t) = c2200(r)t2t 2 + C211o(r)t2t 2t3 +'"- + Co022(r)t2t] (73)
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where each of the functions cijkl(r) is quartic in r2. As in the case N = 3

there are no monomials including terms of the form tT for m > 2 because

each matrix coefficient of tj in the form H(t, r) has rank at most 2.

For each value of r the zero-set of fr defines a quartic surface in the

projective space p 3 . The vanishing of the discriminant is equivalent to the

geometric condition that the surface is singular.

If we try to proceed as in the case N = 3, we eventually find that the

dialytic method applied to the discriminant of f, does not work. The prob-

lem is that, for all r, the zero set of f, is a singular hypersurface in P 3 .

The coordinate vertices (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) are always

singular points.
The coordinate vertices are singular points for the Z(f4)-hypersurfaces

for all N > 3. For N = 4 they are double points, for N = 5 they are triple

points, etc.
There are techniques for dealing with this situation; we shall discuss some

of them in the next section.

i
i
£
I
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7 Families of Hypersurfaces - General Re-
sults S

In this section we examine more closely the family-of-hypersurfaces approach
to general cases. As in the previous section, r is a real variable and t is a I
real vector variable. Given the N x N matrix of forms:

H(t, r) 1: tNLk (r) (74)
k=1

we are interested in the polynomial fr(t) defined by I
f,(t) = Det(H(t,r)) (75)

and its gradient with respect to t.

7.1 The Case N= 4i

As mentioned in the previous section, in the case N = 4 the polynomial f,(t)
has the form: I

f7 M = C22 oo(r)tlt 2 + c2uo(r)t2t2t 3 +... + coo22(r)t~t2 (76)

where each of the functions cijk,(r) is quartic in r2 .

For each value of r the zero-set of f, defines a singular quartic surface
Z(f7 ) in the projective space p 3 . Fix a value of r and consider the geometry I
of this surface V = Z(f,). The values of r associated with the r-polynomial
are associated with singular points on V of a special type. In the following we
will determine more precise conditions that this singular point must satisfy
to be associated with the r-polynomial.

As we observed earlier, for all values of r the coordinate vertices (1,0,0,0),
(0,1,0,0), (0,0,1,0) and (0,0,0,1) are singular points of V so the discriminant
of f, vanishes identically. Consequently, Corollary 1 of Section 5 provides no
information about the value of Ii. Corollary 1 can be strengthened by adding i
a condition that eliminates these coordinate-vertex singular points and others
like them. In this subsection we show how the result can be strengthened in
the case N = 4. I
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First we consider some general fact about matrices. Denote by M(k, 1)
the set of complex k x k matrices of rank no more than 1. Inside of M(4, 4)
lies the codimension-4 algebraic subset M(4, 2) of those matrices of rank 2
or less. (In general, the codimension of the set M(k, 1) inside of M(k, k) for
k > 1 is (k - 1)2 .) Let us work in the projective space P15 associated with
the nonzero 4 x 4 matrices.

Inside of P15 the form H(t, r) provides an imbedded space Q isomorphic
to P3 x P 1. This space Q, being four-dimensional, should be expected to
intersect M(4, 2) in a nonempty set of points. We observe:

I Lemma 1 At each point (t, r) in Q nl M(4,2) the gradient of the function
f,(t) vanishes.

SProof of Lemma: Let Mi(t, r) denote the ith column of H(t, r). The
partial derivative of the determinant with respect to tj can be written:

SOdet 19M, aM4

=jt det(- --- M 2 MsM 4 ) + -.. + dei(MiM2 Ms -7) (77)

3 Each term in the sum on the right-hand side vanishes because any three
columns Mi(t, r) are linearly dependent. 03

It is the presence of points (t, r) for which H(t, r) has excess rank defi-
ciency that complicates the converse of Corollary 1, Section 5. The next two
lemmas, true for general values of N, clarify the problem.

I Lemma 2 Consider the case of general N. Suppose that for some real value
ro the gradient of f7 , vanishes at a real vector to for which H(to, ro) has rank
N - 1. Then there is a nonzero complex vector z such that (ro, z,T) satisfies
the conditions of Lemma 2 of Section 2; that is, ro is an r-value.

Proof of Lemma: Let (to, ro) satisfy the hypotheses of the lemma, and
let z(t) be any column of the adjoint matrix of H(t, r) such that z(to) is
nonzero (there is such a column because of the rank N - 1 assumption).

I Now consider the function g(t) defined by:

g(t) = z(t)*H(t, ro)z(t) (78)

m The polynomial g(t) has fo(t) as a factor, so we know that g(to) and
8gt) = 0 for all ti. On the other hand,
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8g(to) = Oz(t)*H(t, ro)z(t)It=t0 (79) B
59ti atI

and the right hand side is exactly z*H,(ro)z. 0
The situation where there is a real point (to, ro) at which the matrix I

H(to, ro) loses rank by more than 1 is more complicated. To understand this
situation we need to introduce two additional concepts. We restrict attention
to the case where the rank of H(to, ro) is N - 2. I

First, we have the N x N Hessian matrix Hess(f,) defined by:
192fr

Hess(f7 )i1 =- (80)

Because of the rank N - 2 assumption the matrix Hess(fro),3 (to) is nonzero.
Because (to, ro) is real, the hessian matrix is Hermitian.

Second, for an N x N matrix H denote by CN- 2 (H) the sum of the
principal-minor determinants of size (N - 2) x (N - 2). Again, by the as- -
sumptions made we know that cN-2 (H(to, ro)) is a nonzero real number.

Lemma 3 Consider the case of general N. Suppose that for some real value
ro the gradient of f7 , vanishes at a real vector to for which H(to, ro) has rank 1
N - 2. Then ro is an r-value if and only if the normalized Hessian:

Hesso = Hess(f, (to)) (81)
cN-2 (H(to,ro))

is negative-semidefinite, rank no more than 2. 1
Proof of Lemma: Let (to, ro) satisfy the hypotheses of the lemma. Then

we may choose a 4 x 4 complex matrix S of determinant 1 such that the matrixmI
of forms 0(t) defined by:

4)(t) = S*H(tro)S = A(t) B(t) (82)
IB*(t) D(t)

satisfies the conditions A(to) = 0, B(to) = 0 = B*(to) where A(t) is 2 x 2,
B(t) is 2 x (N - 2) and B*(t) is the conjugate transpose of the form B(t). I

Observe that ro is an r-value if and only if for some real to as above the
(1, 1) entry of A(t) is the zero form (the first column of the matrix S is thei
vector z satisfying z*H1 (ro)z = 0).
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It is a simple computation to verify that the normalized Hessian matrix
Hesso is exactly the Hessian of the 2 x 2 determinant function Det(A(t)).
We will show that a constant S exists making Al(t) the zero form if and only
if the Hessian of Det(A(t)) is negative semi-definite, rank no greater than 2.

First, if An(t) = 0, observe that

Det(A(t)) = -A 12(t)A21(t) = -1A 12(t)12  (83)

is a real, negative semidefinite quadratic form. It vanishes on the set of t such
that A12(t) = 0. Because A12 is a complex valued linear form, the dimension
of its kernel is at least N - 2 - hence the rank of the Hessian form is no
greater than 2.

Conversely, suppose A(t) is a 2 x 2 Hermitian matrix of linear forms
defined on t in RN, and that Det(A(t)) is negative semidefinite, rank no
more than 2. We want to show there is a 2 x 2 matrix L of determinant 1

5 such that

I L*A(t)L = [ ) (t) (84)1 -*(t) MI

Without loss of generality we can write A(t) in the form:

3 A(t) a(t) + d(t) b(t) + v'Tc(t) (85)[ b(t) - v'--Tc(t) a(t) - d(t) (

I where a(t), b(t), c(t), d(t) are real linear forms. With this notation,

Det(A(t)) = a(t)' - b(t)' - c(t)' - d(t)2  (86)

So the determinant of A(t) is the square of the Minkowski pseudo-norm of
the vector of real linear forms (a, b, c, d). For any 2 x 2 complex matrix L of
determinant 1 the transformation gL defined by:

gL(A(t)) = L*A(t)L l'(t) + d'(t) b'(t) + vd2 Tc'(t) (87)

L*AYt)L - Vf-1c'(t) a'(t) - d'(t)

induces a mapping
GL(a, b, c, d) = (a', , c', d') (88)
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which preserves the Minkowski pseudo-norm. In fact, this induced mapping
is the covering map of the Lie group SL(2, C) over the identity component I
of the Lorentz group.

The condition that the form Det(A(t) has rank no more than 2 implies
that the space of forms (a, b, c, d) spans a space W of dimension no greater
than 2. Suppose the subspace is two dimensional. By the negative semidefine
assumption we know that the Minkowski inner product is non-positive on
W. The converse is proved if we can we find a Lorentz transformation that
maps W into the three-dimensional subspace a(t) - d(t) = 0. But such a
transformation is easy to find using the properties of the Lorentz group. 0 !

3
I
U

1
I
I

I
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8 A Computational Example

In this section we present a numerical example of the computation of it for a
particular 4 x 4 matrix M. This matrix M is one member of a family discussed
in [13] - its significance is discussed in that reference. Among other things,
it is rank 2, with both nonzero singular values equal to 1.

To represent complex numbers we adopt the notation (x, y) to denote the
number x + V/'-y. The matrix M is:

(0.0000,0.0000) (0.2989,0.0000) (0.2989,0.0000) (0.3493,0.3493)
(0.2989,0.0000) (0.0000,0.0000) (0.2113,0.2113) (0.4278,0.2470)
(0.0000,0.2989) (0.2113,-0.2113) (0.0000,0.0000) (0.2470,0.4278)

g(0.3493,0.3493) (-0.4278,-0.2470)(-0.4278,0.2470) (0.0000,0.0000)

According to the algorithm described at the end of Section 3 a computer
program was used to generate the 976 x 400 matrix A(r) at values along a

grid in the r-space. A plot of the two singular values or, and or400 is shown
below.

aLbounds_3_1510 ,

10

0.1

I • 0.001

0.0001
\

1IG-06 Ii

0.84 0.=45 0.841 0.4415 0.842
Time

Observe the dip in the value of the 4 0 0 1h singular value at the value r0 =

0.841. The minimum singular vector of A(ro) was computed and the derived
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matrices were found to be (approximately) rank 1. The corresponding vector
z at r = 0.841 is: 5[ (0.12997134685973169010, 0.00000000000000000000)

Z (0.51950242727553730404, 0.00000052358896364930)
(0.51950242727553708200, -0.00000052358896368336)
(-0.66583924869638788646,0.00000000000000019122)

The deltas are: i[(-0.84071373809592109261,0.84071373809592109261) 1
6= (1.17970685258911189841, -0.14884516617420087692)S(1.17970685258911145432,0.14884516617420112672)

L(-0.84079248581452115108, 0.84079248581452159517)

The matrix I - MA is: 3
(1.0000,0.0000) (-0.3526,0.0445) (-0.3526, -0.0445) (0.5874,0.0000) 1

(0.2513, -0.2513) (1.0000,0.0000) (-0.2178, -0.2807) (0.5674, -0.1520)
(0.2513,0.2513) (-0.2178,0.2807) (1.0000,0.0000) (0.5674,0.1520) I
(0.5873,0.0000) (0.5414,0.2277) (0.5414, -0.2277) (1.0000,0.0000)

To verify that I - MA is singular we compute its singular values: i
2.13191170117315254018
1.13696819871065679664
0.99498302424291718005 i
0.00000000000000004737

Examination of the plots for values of r > 0.841 showed that A(r) is I
nonsingular for larger values (we needed only to check up to r = 1, because
that is the norm of M). We conclude that p(M) = 0.841.

The example just presented illustrates an important point about the com- 1
putation of r-values. The reader might recall the goal stated in Section 1, to
derive a polynomial whose largest real root is the value u (M). Now that we
have come to an example, no polynomial was produced. I

The point is that the r-polynomial is associated with some special matrix
problems which allow special methods of computations.

Though we have not examined the numerical properties of the solution
algorithms for these special types of problem, we have had good experience
with them in practice. Note how close to zero the smallest singular value of
I - MA is in the example. More is said about this issue in Section 10.1
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9 Abstract Interpretation

Using a geometric construction, the problem of determining the degree5of the r-polynomial for general N can be formulated in terms of intersection
theory [14]. In this subsection we develop that formulation.

i We begin by modifying the basic equations

z*Hk(r)z=O k=1,...,N (89)

3 The first step is to replace i by an independent variable w, to give:

wTHk(r)z=O k=1,...,N (90)I The second step is to introduce homogeneous coordinates (ri, r 2) in place
of the single affine coordinate r:

Hk(r) = rMZMk - r2eek (91)

These two changes of variable make the equations 90 tri-linear in the
three vectors z, w and r. We now interpret these equations on the product
X of three projective spaces:

X = pN-1 X pN-1 X pl (92)

where the last factor corresponds to the r-vector, the second to the w-vector,3and the first to the z-vector. By the Segre imbedding i we realize X as a
smooth submanifold of the projective space p2N

2 -1.

3 i X _+ p2N2 -, (93)

The system of equations 90 cuts out a codimension-N linear subspace L
of p2N

2 -1. The intersection of X with L is a subvariety of dimension N - 1,
denoted Y.

To proceed with the analysis we need to introduce some vector bun-
dles. First, we have the bundle T(X), the bundle of tangent vectors of
X. Contained in T(X) is the codimension-one subbundle E consisting of
those vectors that are tangent to the pN-1 X pN-1 factors of X. Under
the projection map 7r3 : X -+ P1, E is the kernel of the induced morphism
r3.': T(X) --+ T(PI). Now the bundle T(X) is itself contained in the larger
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bundle Tx(P2N2 -1), the restriction of the tangent bundle of the ambient
space to the subvariety X. Finally, over the space L we have the bundle F 3
defined to be TL(p2N2 -1)IT(L). The bundle F is N-dimensional, its dual is
usually called the normal bundle to L in p2N2-1.

All of the bundles just described can be restricted to Y. Over Y, we have U
E -+ T(X) -+ T(P2N2-1) -+ F (94)

The composition morphism a : E -+ F of vector bundles on Y is full rank
N at most points of Y. There is a special subset of Y, denoted DN-1(u), at
which the rank of a is less than or equal to N - 1. Let us call this set 5
DN-1 the degeneracy locus. For generic data the degeneracy locus DN-1 is
a codimension N - 1 subvariety of Y, i.e. a finite set of points. It is that
finite set of values (z,, wi, ri) we are after. The r-polynomial p(r) is obtained
by eliminating w and z and has as its roots {ri}.

The general theory does not tell how to find the points in the degeneracy
locus, but (under certain conditions of genericity) the Porteus-Thom formula
[14] can be used to compute the number of points in that set. In the remain-
der of this section we explain the general computational procedure and apply
the formula for small values of N.

The notation is as in Chapter 14 of [14]. The degeneracy class of 0 is an
integral cohomology class in H*(Y, Z): 3

[ l Co • • C3-N

A'-'(c(F- E)) = Det : (95) 1
CN-1 CN-2 "'" Cl

The number of points in the degeneracy locus is: I

card(DN-1 (a)) = AN-I(c(F - E)) l[Y] (96)

We will compute this intersection number by pulling back to the space 5
X. Recall that H*(X, Z) is a truncated polynomial ring on three generators
hl, h2, h3 subject to the relations: 3

hN=O hN= h0 2= 0 (97)

Geometrically, each hj is Poincaire-dual to a hyperplane in its respective I
projective-space factor. In this ring we have the formula
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I c(T(PN-l x pN-)= (1 + hi)N(1 + h2)N (98)

so the pullback of the class of F - E is:

I i'(c(F - E)) = (1 + (h, + h2 + h3))N/((l + h1 )(1 + h2))N (99)

Finally, by Poincaire duality and the naturality of Chern classes we have:

u[ AN-'(c(F - E)) n[Y] = ((hi + h2 + h3)N U.i*1N-l(c(F - E))) [X] (100)

The right-hand side of this last equation can be computed from the (finite)
power series expansion for the rational function in the classes hl, h2, h3 , where
we have

i hN-'hN-1h3 [X] = 1 (101)I and all other monomial expressions in hl, h 2 and h3 vanish when applied to
[X].

9.1 Computation for N = 2

3 In the case N = 2 the expression A'(c(F - E)) is the determinant of the
1 x 1 matrix cl(F - E). From equation **:

3 i*(c(F - E)) = (1 + (h, + h2 + h3 ))2/((1 + hi)(1 + h2 ))2  (102)

from which it is easily shown that cl(F - E) = 2h 3. Then

5 ((h, + h2 + h3)N U i*A'(c(F - E)))[X] = 4hih2h3[X] = 4 (103)

We conclude there are four r-values for the case N = 2

9.2 Computation for N = 3

I In the case N = 3 the expression A2(c(F - E)) is the determinant of the
2 x 2 matrix

IA(c(F - E)) = Det [C2 C] C° 1 - C2C° (104)
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Now i*(c(F - E)) = (1 + (h, + h2 + h3))3/((1 + hi)(1 + h2))3  (105)

from which it is easily shown that: 5
co = 1 c = 3h 3 c2 = -3(hlh 2 + hlh3 + h2h3 ) (106)Thus I

-(c(F-E)) =• -c 2 o=3(hlh2 + hjh3 + h2h3 ) (107) 5
Then

((hi + h2 + h3 )3 U i*A3(c(F - E))) [X] = 36h 2hh 3 [X] = 36 (108) 5
We conclude there are 36 r-values for the case N = 3

9.3 Computation for N > 3

Using the Porteus-Thom formula and a symbolic manipulation program (Math- 3
ematica) we have performed the computations for the values N = 4, N = 5
for which the answers are 272 and 2150. These numbers agree with those
produced by formula (51) in Section 4. On geometric grounds we suspect
that the number produced by the hyperdeterminantal formula will always
agree with the number provided by Porteus-Thom - we believe both num-
bers are the degree of the r-polynomial for generic N x N complex matrices
M. A rigorous proof of this identity, if true, requires a deeper understanding
of the theory than we now have. 3

4
I
I
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10 Closing Remarks

Various approaches were taken to generate the r-polynomial and to derive
formulas for its degree. The original problem was to find extremal points in5 a parametrized system of quadratic hermitian forms on the complex vector
z for which the system has a nonzero solution. Because hermitian forms are
involved, the problem is intrinsically one on the real vector space of z and
T parameters. Our general approach was to enlarge the space, replacing 2
with a new vector w, to obtain a parametrized system of bilinear forms on z
and w. Methods appropriate for general systems of bilinear forms were then
employed to tackle the problem.

The order in which we came upon the results in the various sections might
be of interest. The earliest computational approach we had was the families-
of-hypersurfaces approach described in Sections 5, 6 and 7 [2]. That method
was adequate for the 2 and 3-block problems, but it fell short of finishing off
the four-block problem (example in Section 8), so we continued to look for an
improved approach. In the process we found (through a lead from Dave Mor-
rison) the hyperdeterminantal theory of Section 4. The hyperdeterminantal

I theory generalizes the families-of-hypersurfaces approach, giving a formula
for the degree of the hyperdeterminant associated with the r-polynomial, but
it does not provide a (reasonable) computational procedure for finding the3 roots. After looking at the hyperdeterminants for a while, we finally tried
the successful dialytic approach described in Sections 2 and 3. The abstract
interpretation of Section 9 was the last piece of the puzzle to fall into place.
It is the geometric idea behind the dialytic method of Sections 2 and 3.

Each part of the theory tells something different. The dialytic approach
seems to be a general computational procedure but it is not clear why it
should work. The abstract interpretation provides the theoretical basis for
it. The hyperdeterminantal approach is the most direct tie with the classical
theory, while the families-of-hypersurfaces approach (as a special case of the
hyperdeterminantal approach) is the easiest computational method for the 2
and 3-block problems.

At this point the picture we have could be complete, but there are some
theoretical gaps (next subsection) that could lead to surprises in higher di-
mensions.
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10.1 Theoretical Gaps

The examples we have checked suggest that we have been successful, but
in fact we still do not have a rigorous proof. The problem is that the
parametrized system of bilinear forms (used in different ways in the dia-
lytic elimination, the hyperdeterminant and the abstract interpretation) is
not generic by construction, so there remains some doubt that the theorems
we have applied hold true for general N. To see the problem, note that we 3
start with a complex N x N matrix (2N 2 real parameters) from which we
generate a system of N hermitian quadratic forms of size N (N3 real pa-
rameters). Strictly speaking, our use of the hyperdeterminantal formula of 3
Section 4 and the Porteus-Thom formula of Section 9 is valid only for generic
families of forms. Some additional conditions must be checked for each value
of N to see if any matrices M of size N produce a system of forms for which 5
the formulas are correct.

To illustrate the potential problem, let us consider a different approach
to the special case N = 2. We have a parametrized pair of forms H,(r) on I
the complex 2-vector z, let us work in the real four-dimensional space of real
and imaginary parts of z. For each value of r the zero set of the pair of forms
is represented geometrically by the intersection of two quadric hypersurfaces
in P3 (this is real projective space now). The parameter r0 is extremal for
this family when the hypersurfaces meet tangentially at some point on the
intersection curve.

The condition that two quadric surfaces should meet tangentially at some
point is well known in the classic literature. The procedure for computing
the associated invariant is presented in Chapter 9, article 202 of [15]. For a
generic pair of forms, the invariant is a polynomial of total degree 24 in the
coefficients of the forms. How do we reconcile this result with the established i
fact that the degree of the r-polynomial for N = 2 is 4?

As a first step, we might claim that the polynomial of degree 24 derived
in this manner should have the r-polynomial as a factor. This first claim I
turns out to be correct. As a second step, we might claim that one can
compute y by finding the 24 roots and then selecting from them the four
roots associated with the r-polynomial. This second claim is incorrect. The l
problem is that for quadrics of the type we have to work with, the degree-24
invariant vanishes identically. Thus, the number 24 that is the right answer
for generic families of forms is irrelevant to our problem. If we did not already
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know the answer to be 4, we might easily be misled by the computation for
generic data.

From this simple illustration we see that there is danger in believing
our formulas for the degree of the r-polynomial for general N without more
analysis. It would be nice to find a complete, definitive solution to this
problem.

10.2 Do We Really Want to Find the r-Polynomial?

Let us reconcile the results obtained with the stated goals of Section 1. We
originally said our goal was to find a polynomial p(r), whose largest root was
yz(M), as a generalization of the polynomial in equation (5) for the operator

Snorm of M.
In fact, what we have obtained (by a variety of methods) are matrices

T(r) of polynomials in the single variable r that are, in general, full rank but
become rank deficient at a finite set of r-values. This finite set of r-values
for which T(r) drops rank is the set of values we seek.

In theory, a single polynomial of the type specified can be derived fromI= the matrix T(r) - one finds the greatest common divisor of the determinants
of all the maximal square submatrices of T(r). In the classical literature
this polynomial is called the highest invariant factor of T(r), see [16]. From
a computational point of view it is undesirable to evaluate even one such
determinant, let alone find the greatest common divisor of a large collection
of them.

In fact, the situation is better than it seems. There are numerical meth-
ods for computing the roots of the highest invariant factor of T(r) withoutI computing the determinantal polynomials.

For example, if T(r) is a 3 x 2 matrix of quadratic polynomials, we can
compute the roots as follows. First, write

T(r) = T2 r2 + T1 r + To (109)

Observe that T(r) drops rank at r0 only if there is a nonzero vector v
such that

T(ro)v = 0 (110)

Form the 5 x 4 affine matrix S(r) defined by:
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S(r) [T2 +T T] (111) 3
where I is the 2 x 2 identity matrix. Note that the equation 3

S(ro)w = 0 (112)

has a nonzero solution w if and only if r0 is a root of the highest invariant 3
factor of T(r). So we have reduced the problem to one of finding the invariant
factors of an affine matrix function of r.

To find the roots of the highest invariant factor of an affine matrix function
we proceed as follows:

1. Pick a maximal square submatrix (4 x 4 for our example) I
2. Solve the generalized eigenvalue problem for that matrix

3. Pick another maximal square submatrix

4. Solve the generalized eigenvalue problem for that matrix 3
5. Compare the solutions for the two problems

6. Iterate as needed 3
In theory one might have to solve many generalized eigenvalue problems

to reduce the set of common roots to the set of desired solutions. In practice,
one should get the desired set of values after only a few trial problems.

In fact, one can get away with solving only one generalized eigenvalue
problem if the finite set of roots obtained can be checked by back substitu-
tion. The dialytic procedure described in Sections 2 and 3 can be checked
in this way, so the issue of not deriving a single polynomial is not a real
inconvenience.

Of course, there is no denying that our algorithm produces large matri-
ces in the generalized eigenvalue computations for large values of N. The 3
question of a more efficient computation for the set of r-value remains open.

I
46 1

I
U



I

I
I

10.3 Reducibility of the r-Polynomial

As a final note, it is interesting that in the case N = 2 the r-polynomial is
the difference between two squares, hence it is a reducible polynomial (see

i Appendix A).
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I
The Mu-Polynomial for Two-by-Two MatricesI

Consider the 2 x 2 complex matrix M:

I[mnnin 12] (1

M= [M21 mJ(Al)

We take as a definition:

5(M) = max p(eie M) (A2)

where the maximization is over all real diagonal 2 x 2 matrices 0. This note is to establish how the
function tp(M) can be computed by finding the largest real root of a real polynomial in one variable
with coefficients that are functions of the complex matrix M. The polynomial, written as a function ofi the variable r, is:

th e v a i a l e , s:p (r) =i - [r4 - ( IM ,,I12 + Im 22 12) r2 + Id et(M ) 12] 2 + 4 r4 IM 12 12 Ira 21 12 (A 14 )

The derivation follows.

3 Define the pair of 2 x 2 matrices HI(r), H2(r) by the formulas:

* 11(r) =m [:: [M .m2] - [0 g] (A3)

I H2 (r) =. []M2]
I

Then gx(M) is the largest real value of r such that there is a nonzero complex vector z for which

[ 72] H(r)[Z] =, j=1,2 (A5)

I The complex vector z is an eigenvector of eiOM associated with the eigenvalue gx(M).

3 In previous work it has been shown that there is a nonzero real vector to such that:

IIt°1 HI•(tM))+ t°o H2(IX(M))] z=O (A6)I

Therefore, if we consider the matrix function H(tr) defined by:

I
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,I
H(t,r) = t, H'(r) + t2 H2(r) (A7)

we find that the matrix HOP, P.1M) is rank deficient, with the vector z in its kernel. Now let W be a

unitary transformation whose first column is proportional to z. Then:

aro XI

W* H2(I±(M) W 20 '12

andI

W"' Hlt0 ,gM)) W =[00 X0j (M9)3

Therefore:

r ol [01 o 2
x a12 x a(X + (02 t2- 2 2 (Ao)

From this expression, we conclude that the polynomial function f(t,r) defined by:

f(t,r) = det(H(tr)) = -r2 'm1212 t2 + (All)

[(Im1 I 12 - r2)(Im~l2 - )12 + Im21121m12 12 - 2*Re(rn1 2mnIffl 21m22)] tlt2 - r2 Im2112 t2,2

which reduces to:

fit, r) = -1 Im12 12 t2 + [r4 - (Iml112 + Im22l 2) r2 + Idet(M)l 2] tit 2 - r2 Im2112 t2

has the following properties:

f(t°,jx(M)) = 0 (Al2a)

jf(to.gM) = 0, 1,2 (Al2b)

From the pair of equations in (Al2b) it is possible to eliminate the unknown parameters t3° and arrive
at a polynomial in the coefficients of M and R that must be satisfied by g(M). To this end, consider
the pair of polynomial equations:
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I
af(t,r) = 0, j = L,2 (A13)

and eliminate t1 and t2. This elimination is performed in the appendix. The final result is: equation
(A13) can be solved for some nonzero vector to if and only if r is a root of the polynomial p(r) defined
by

IP(r)= [r4 _(IM,112 + IM2212)12 + Idet(M)12] 2+ 4r 4 IM12 12 IM21 12  A4

It is also part of the result shown in the appendix that if r is real then the nonzero vector to is real. By
what we have shown so far, gi(M) is a real root of p(r). What we would like to show is the following:

Claim: The polynomial p(r) has at least one nonnegative real root, and the largest real root is g(M).

Proof of Claim: By the construction of p(r) we know that p.(M), a nonnegative real number, is a root,
so the first part of the claim must be true if equation (A14) is correct. It turns out that it is easy to ver-
ify the first part of the claim directly, as follows.

The polynomial p(r) can be factored as the difference between two squares. One of the factors is:

I pl(r) = r4 - (Im1112 + Im2212 + 2 Im12 11m 211) r2 + Idet(M)12 (A15)

3 Considering (A15) as a quadratic polynomial in r2, the discriminant is:

3 disc(M) = [imn12 + Im2212 + 2 Im121Im 21I] 2 4 Idet(M)12  (A16)

which is itself a difference between two squares. One of the two factors is obviously nonnegative3 (being the sum of nonnegative quantities), the other is:

Im1112 + Im2212 + 2 Im12 11m 211 - 2 Idet(M)I (A17)

By the triangle inequality, the expression in (A17) is greater than or equal to

I Im 112 + Im2212 - 2 Im IIm221 (A18)

which is a square, hence a nonnegative quantity. It follows that (A15) has two real roots (for ?2), both
of which are positive because the coefficient of r2 is negative and the constant term is positive. Then
there are at least two nonnegative real roots of p as a function of r, counted with multiplicity, so the3 first part of the claim has been verified.

We now consider the second part of the claim. Suppose r8 is the largest real root of (A14). By the
computation in the appendix, there is a nonzero real vector t such that

af(t°, to)
f•tr) = 0, j = 1,2 (A19)

Because f(t,r) is homogeneous in t, we also have f(t°,r0) = 0, so H(t°, r0) is singular. We can find a
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unitary matrix V such that (compare with equation (A1O)):

V* ttro) V= +] 1t i1' +4 2 - t2~ A0

'[ 0 x 0J 1'La2 x1a 2 xj

First suppose x° is nonzero. Then equation (A19) implies y' = 0 and y2 = 0, so the first column of V
is a vector z satisfying (AM), and p.(M) = ro.

Next, suppose xo is 0. Then H(tW, ro) = 0, and if both to and t2 are nonzero then the two matrices
HI(ro) and H2(ro) are proportional. Then any nonzero vector z satisfying 3

[r1 72] H11(ra) [] (A21)

will also satisfy the same equation with Hg replaced with H2. Now the matrix H-(r) is indefinite (sig-
nature 0) for all real r, so there is always a nonzero vector z satisfying (A21), so if both to and to are
nonzero we may conclude that Ig(M) = ro.

Finally, if (say) to is zero, then t° is nonzero and so H2(ro) must be zero (recall we are assuming
H(t°, ro) = 0) In this case M21 is zero. It can be verified directly from the definition (A2) that i(M) is I
the maximum of { Im 11,Im22 }. Also, in this special case the polynomial p(r) is:

p(r) =- [r4 - (Im 112 + Im2212) r2 + Im11I21m2212]2  (A22) I
and the largest real root ro is the maximum of {Im 11I,Im21} which is p.(M). A symmetric argument
applies if t2 is zero. The claim is verified. I

Computation

We derive the result stated between (A13) and (A14) in the above text.

Consider equation (A13):

af(tr) = 0, j = 1,2 (A13)

The function f(t,r) is homogeneous, quadratic in t1, t2 so equation (A13) can be rewritten: I

[~2)t qjjr2) q12(r2)] =0 ~ (A3
= [i~r) q(r)J 1]J=o A3

where (use the expressions in (A 11)):

5
54 I

I



qll(r2) = -2 Im12 12 r2  (A24)

0q2 1(r2) = r4 - (Imt 11
2 + Im2212) r2 + IdetM 12

3 q12(r2) = q21(x)

qz2(r 2) = -2 Im2112 r2

I There is a nonzero vector t satisfying (A13) if and only if

3 det(Q(r2)) = qn(r2)q2(r 2) - q21(r2)qh2(r2) = 0. (A24)

But it is easy to check that:

det(Q(r2)) = p(r) =[r4 - (Iml 12 + Im2212) r2 + Idet(M)1212 + 4 r4 'M1212 M2112  (A25)

If r is real, the matrix Q(r 2) is real, symmetric and the kernel is real. The demonstration is complete.
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